Library Subscription: Guest
Home Archives Officers Future meetings American Society of Thermal and Fluids Engineering
Second Thermal and Fluids Engineering  Conference

ISSN: 2379-1748
ISBN: 978-1-56700-430-4

ECOLOGICAL OPTIMIZATION OF AN IRREVERSIBLE OTTO CYCLE WITH VARIABLE SPECIFIC HEATS OF WORKING FLUID

Yanlin Ge
Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China

Lingen Chen
Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China

Xiaoyong Qin
Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan 430033, China; Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan 430033, China; College of Power Engineering, Naval University of Engineering, Wuhan 430033, China

Zhihui Xie
Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China

Abstract

Considering internal irreversibility loss (IIL), friction loss (FL) and heat transfer loss (HTL), an irreversible Otto cycle model is built up by using air standard (AS) assumption. Based on finite time thermodynamics (FTT), computing entropy generation rate (EGR) by using the irreversible losses in cycle, the ecological function (EF) performance of cycle is optimized when the specific heat (SH) of the working fluid (WF) varies with temperature with linear relation. Some important expressions, including efficiency, power output, EGR and EF, are obtained. Moreover, the effects of variable SH of WF and three losses on cycle performance are investigated. The research conclusion can provide some guidelines for the actual Otto cycle engine performance optimization.

Purchase $20.00 Check subscription Publication Ethics and Malpractice Recommend to my Librarian Bookmark this Page