Library Subscription: Guest
Home Archives Officers Future meetings American Society of Thermal and Fluids Engineering
Second Thermal and Fluids Engineering  Conference

ISSN: 2379-1748
ISBN: 978-1-56700-430-4

DYNAMIC PROGRAMMING FOR POWER-OPTIMIZATION OF MULTISTAGE ISOTHERMAL IRREVERSIBLE CHEMICAL ENGINES WITH DIFFUSIVE MASS TRANSFER LAW

Lingen Chen
Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China

Shaojun Xia
Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China; Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China; College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China

Yanlin Ge
Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China

Zhihui Xie
Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China

Abstract

A multistage isothermal irreversible chemical engine system with the diffusive mass transfer law [ g ∝ Δ(c) ] is investigated in this paper. For the fixed initial time and fixed initial concentration of the key component in the driving fluid, the optimality condition for the maximum power output of the multistage chemical engine system are obtained by Hamilton-Jacobi-Bellman (HJB) optimization theory, and then numerical examples for two different boundary conditions are given by dynamic programming. The results show that the relative concentration of the key component in the driving fluid for the maximum power output of the multistage chemical engine system changes with time approximate linearly; both the internal irreversibility factor and boundary concentration conditions has significant effects on the optimization results. The results obtained in this paper could provide some theoretical guidelines for the optimal designs and operations of practical energy conversion systems.

Purchase $20.00 Check subscription Publication Ethics and Malpractice Recommend to my Librarian Bookmark this Page