Library Subscription: Guest
Home Archives Officers Future meetings American Society of Thermal and Fluids Engineering
Second Thermal and Fluids Engineering  Conference

ISSN: 2379-1748
ISBN: 978-1-56700-430-4

EXPLORING THE OPTIMAL PERFORMANCE OF AN IRREVERSIBLE DOUBLE RESONANCE ENERGY SELECTIVE ELECTRON HEAT ENGINE

Zemin Ding
Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China

Lingen Chen
Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China

Yanlin Ge
Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China

Zhihui Xie
Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan, 430033, P. R. China; College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China

Abstract

A theoretical model for irreversible double resonance ESE (energy selective electron) heat engine system considering phonon induced bypass heat flow is proposed. The thermodynamic performance of the electron engine is optimized and the optimal regions of performance parameters are determined with finite time thermodynamics theory. The influences of heat leakage and structure parameters of the electron system on the performance are discussed in detail by numerical examples. It reveals that the characteristic of power versus efficiency behave as loop-shaped curves in spite of the heat leakage which will always decrease the efficiency of the electron engine. Through properly choosing design parameters, the ESE engine can be designed to operate optimal conditions with maximum power or efficiency. The obtained results have academic guidelines for designing practical electron heat engines.

Purchase $20.00 Check subscription Publication Ethics and Malpractice Recommend to my Librarian Bookmark this Page