图书馆订购 Guest

ISSN Online: 2379-1748

ISBN Flash Drive: 978-1-56700-469-4

ISBN Online: 978-1-56700-470-0

Second Thermal and Fluids Engineering Conference
April, 2-5, 2017, Las Vegas, NV, USA

MODELING OF MEMBRANE FOULING FOR ROTATING FILTRATION SYSTEMS

Get access (open in a dialog) pages 2479-2489
DOI: 10.1615/TFEC2017.ipc.018135

摘要

There is a need for a comprehensive model of dynamic filtration systems to predict the limiting flux and the specific energy. This is motivated by the need for an efficient separation system that could provide an alternative to waste well injection in the gas and oil industry. Dynamic membrane systems can help reduce the development of cake buildup due to higher shear rate. However, a rotating membrane could suffer from reduction in transmembrane pressure at higher speeds resulting in reduced flux. The present work long-term goal is to develop an analytical model for a rotating membrane adaptable to various membrane materials, surface areas, pressure limitations, and total suspended solid concentrations. The present results show that the flux performance of the membrane is closely correlated to the maximum shear rate. The flux also depends on the specific cake resistance, the compressibility of the foulants, and the transmembrane pressures. The increase in rotational speed encourages the breakup of large colloids into smaller particles resulting in a denser packed cake and increased specific resistance.