用户登录 购物车
图书馆订购 Guest
主页 旧刊 有关人员 未来大会 American Society of Thermal and Fluids Engineering

ISSN 在线: 2379-1748

ISBN 打印: 978-1-56700-472-4 (Flash Drive)

ISBN 在线: 978-1-56700-471-7

3rd Thermal and Fluids Engineering Conference (TFEC)
March, 4–7, 2018, Fort Lauderdale, FL, USA

FEEDSTOCK EFFECT ON BIOMASS TORREFACTION: A COMPARATIVE ASSESSMENT OF WILLOW AND BEECH TORREFACTION

Get access pages 309-316
DOI: 10.1615/TFEC2018.cbf.021690

摘要

Experimental data on ultimate analysis of different biomasses torrefied at various conditions are collected from past studies to establish a new semi-empirical model for predicting the C-H-O compositions of a torrefied wood and volatiles at a given temperature and residence time. The model is used to conduct a comparative analysis of torrefaction of two popular woody biomasses: willow and beech. Key parameters such as the energy yield and the lower heating value of the torrefied wood can be predicted using this model. In particular, the heat of reaction is calculated at temperatures in the range 523-573K and residence time between 10-40 min for the two woods considered in this study. The reaction heat of willow torrefaction was found to be between 140 kJ/kg and 300 kJ/kg, whereas for beech torrefaction it was observed to vary between 170 kJ/kg and –130 kJ/kg. The results suggest that at a low temperature (e.g. 523 K), the reaction is less endothermic at a longer residence time for both willow and beech. Willow torrefaction is found to be more endothermic at 573 K than 523 K. On the other hand, for beech, the process shifts from endothermic to exothermic when the temperature increases from 523 K to 573 K.
主页 旧刊 有关人员 未来大会 American Society of Thermal and Fluids Engineering 中文 English Русский Português 帮助 联系我们 返回至ASTFE