用户登录 购物车
图书馆订购 Guest
主页 旧刊 有关人员 未来大会 American Society of Thermal and Fluids Engineering

ISSN 在线: 2379-1748

ISBN 打印: 978-1-56700-472-4 (Flash Drive)

ISBN 在线: 978-1-56700-471-7

3rd Thermal and Fluids Engineering Conference (TFEC)
March, 4–7, 2018, Fort Lauderdale, FL, USA

Prediction of Turbulent Shear Stresses through Dysfunctional Bileaflet Mechanical Heart Valves using Computational Fluid Dynamics

Get access pages 1135-1143
DOI: 10.1615/TFEC2018.bio.022070

摘要

There are more than 300,000 heart valves implanted annually worldwide with about 50% of them being mechanical valves. The heart valve replacement is often a common treatment for severe valvular disease. However, valves may dysfunction leading to adverse hemodynamic conditions. The current computational study investigated the flow around a bileaflet mechanical heart valve at different leaflet dysfunction levels of 0%, 50%, and 100%, and documented the relevant flow characteristics such as vortical structures and turbulent shear stresses. Studying the flow characteristics through these valves during their normal operation and dysfunction can lead to better understanding of their performance, possibly improved designs, and help identify conditions that may increase the potential risk of blood cell damage. Results suggested that maximum flow velocities increased with dysfunction from 2.05 to 4.49 ms−1 which were accompanied by growing eddies and velocity fluctuations. These fluctuations led to higher turbulent shear stresses from 90 to 800 N.m−2 as dysfunctionality increased. These stress values exceeded the thresholds corresponding to elevated risk of hemolysis and platelet activation. The regions of elevated stresses were concentrated around and downstream of the functional leaflet where high jet velocity and stronger helical structures existed.
主页 旧刊 有关人员 未来大会 American Society of Thermal and Fluids Engineering 中文 English Русский Português 帮助 联系我们 返回至ASTFE