Library Subscription: Guest

ISSN Online: 2379-1748

ISBN Flash Drive: 978-1-56700-517-2

5-6th Thermal and Fluids Engineering Conference (TFEC)
May, 26–28, 2021 , Virtual

EFFECT OF MICROSCALE TURBULENT STRUCTURES DYNAMICS ON FORCED CONVECTION IN TURBULENT POROUS MEDIA FLOW

Get access (open in a dialog) pages 1377-1386
DOI: 10.1615/TFEC2021.tfl.036761

Abstract

The influence of microscale flow structures (smaller than the pore size) on turbulent heat transfer in porous media has not been yet investigated. The goal of this study is to determine the influence of the micro-vortices on convection heat transfer in turbulent porous media flow. Turbulent flow in a homogeneous porous medium was investigated using Large Eddy Simulation (LES) at a Reynolds number of 300. We observed that the convection heat transfer characteristics are dependent on whether the micro-vortices are attached or detached from the surface of the obstacle. There is a spectral correlation between the Nusselt number and the pressure instabilities due to vortex shedding. A secondary flow instability occurs due to high pressure regions forming periodically near the converging pathway between obstacles. This causes local adverse pressure gradient, affecting the flow velocity and convection heat transfer. This study has been performed for obstacles with shapes of square and circular cylinders at porosities of 0.50 and 0.87. Understanding the dominant modes that affect convection heat transfer can aid in finding an optimum geometry for the porous medium.
Video presentation