Library Subscription: Guest

ISSN Online: 2379-1748

ISBN Flash Drive: 978-1-56700-431-1

ISBN Online: 978-1-56700-430-4

First Thermal and Fluids Engineering Summer Conference
August, 9-12, 2015 , New York City, USA

INTEGRATED ADDITIVE MANUFACTURING AND LASER MICROMACHINING TO FABRICATE THERMOELECTRIC GENERATORS DIRECTLY ONTO WASTE-HEAT COMPONENTS

Get access (open in a dialog) pages 633-639
DOI: 10.1615/TFESC1.ecv.012465

Abstract

Thermoelectric generators are solid-state devices that can convert heat directly into electricity. They are widely used in many engineering applications such as vehicle and industrial waste-heat recovery systems to improve operating efficiency and reduce operating costs. Traditional state-of-art manufacturing technologies for TEGs are based on prefabricated components and rely on soldering, epoxy binding and mechanical clamping for assembly. This potentially reduces their durability while also increasing manufacturing costs and energy use. Additive manufacturing (AM) technologies are particularly well-suited to address these issues by eliminating the need for subassembly requirements and allowing for the integrated fabrication of TEGs directly onto engineering components.AM can also reduce the time for material synthesis and device processing from weeks to hours or less because it's an inherently scalable manufacturing process and represents a significant enabling technology for many applications. In this work, we describe the process of fabricating a TEG entirely by using a thermal-spray technology, dispenser printing and laser micro-machining. High-performance can be thermoelectric materials are dispensed in paste (ink) form under robotic control and laser sintered into solid form. Laser also provide material removal, allowing for an integrated, cost-optimized and high-volume manufacturing process. Results from thermal spray, dispenser printing studies are presented and discussed.