カスタマーログイン ショッピングカート
ライブラリ登録: Guest
ホーム アーカイブ 役員 今後の会合 American Society of Thermal and Fluids Engineering

ISBN : 978-1-56700-518-9 (Flash Drive)

5th Thermal and Fluids Engineering Conference (TFEC)
2020, 5-8, April , New Orleans, LA, USA

NANOPARTICLES SHAPE EFFECT ON VISCOSITY AND THERMAL CONDUCTIVITY OF IONIC LIQUIDS BASED NANOFLUIDS

Get access pages 529-533
DOI: 10.1615/TFEC2020.nma.032442

要約

Ionic liquids (ILs) are considered a potential candidate for a heat transfer fluid (HTF) in concentrated solar power (CSP) applications. There are already many CSP sites in operation throughout the world. These complex energy systems use various subsystems such as mirrors and lenses to concentrate solar energy onto a central collector. These CSP sites rely on having a stable HTF in order to maintain high energy storage capacity and to reduce costs. This research seeks to develop a robust set of workable data that can be used to better understand the nanoparticles shape effect on viscosity and thermal conductivity of ionic liquids (ILs) based nanofluids. ILs based nanofluids were prepared by pouring 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([C4mim][NTf2]) base IL and Al2O3 nanoparticles. Three different particle shapes (platelets, blades, and spherical) were used to prepare the 1 wt% ILs based nanofluids. Experimental results shows that the needle-shaped nanoparticle provided the greatest effective thermal conductivity compared to the base ILs.
ホーム アーカイブ 役員 今後の会合 American Society of Thermal and Fluids Engineering English Русский 中文 Português ヘルプ 問合せ先 ASTFEへ戻る