カスタマーログイン ショッピングカート
ライブラリ登録: Guest
ホーム アーカイブ 役員 今後の会合 American Society of Thermal and Fluids Engineering

ISSN オンライン: 2379-1748

ISBN 印刷: 978-1-56700-472-4 (Flash Drive)

ISBN オンライン: 978-1-56700-471-7

3rd Thermal and Fluids Engineering Conference (TFEC)
March, 4–7, 2018, Fort Lauderdale, FL, USA

Computational Analysis of Inspiratory and Expiratory Flow in the Lung Airway

Get access pages 1083-1086
DOI: 10.1615/TFEC2018.bio.021629

要約

Inspiratory and expiratory flow in a multi-generation pig lung airway was numerically studied at a peak tracheal flow rate corresponding to a Reynolds number of 1150. The model was validated by comparing velocity distributions with previous measurements for a simple airway bifurcation. Simulation results at different cross sections of the airway tree provided detailed maps of the axial and secondary flow patterns. Flow at the main bifurcation and in many other bifurcations showed complex secondary flow structures. The flow morphology in the pig airways differed from that of simplified bifurcation airway models and that of humans, which is likely due to the large differences in the airway geometry of the different species. The inspiratory pressure drop was calculated, and simulation results suggested that the viscous pressure drop values were comparable to earlier studies in human airway geometries. The reported differences between pig and human airways need to be taken into consideration when generalizing results of animal experiments to humans.
ホーム アーカイブ 役員 今後の会合 American Society of Thermal and Fluids Engineering English Русский 中文 Português ヘルプ 問合せ先 ASTFEへ戻る