Доступ предоставлен для: Guest

ISSN Online: 2379-1748

9th Thermal and Fluids Engineering Conference (TFEC)
April, 21-24, 2024, Corvallis, OR, USA

OPPORTUNITIES FOR USING NUCLEAR MICROREACTORS FOR WASTEWATER TREATMENT, HYDROGEN PRODUCTION, AND AMMONIA PRODUCTION

Get access (open in a dialog) pages 1003-1014
DOI: 10.1615/TFEC2024.icc.050659

Аннотация

In 2021, the White House proposed a 50-52% reduction in greenhouse gas emissions by the year 2030; therefore, there is significant interest in energy sources and processes that reduce carbon dioxide emissions. This paper presents a sensitivity analysis of a nuclear microreactor-powered design for concurrent hydrogen (H2) and ammonia (NH3) production, with a focus on wastewater treatment plant applications. Wastewater with organic materials (e.g., municipal wastewater, swine lagoon waste, and food waste) are the analyzed feedstocks. The system integrates the anaerobic digestion of wastewater sludge with a Brayton cycle-based power generation unit heated by the microreactor. Using empirical data and an analytical model, the paper investigates the system's response to variations in key operational parameters. The sensitivity analysis explores the influence of parameters such as the chemical oxygen demand of the feedstock, compressor isentropic efficiency, and reactor temperature and pressure on H2 and NH3 production rates, Brayton cycle efficiency, and carbon dioxide emissions. Highlights from this analysis show a nonlinear dependence for Brayton efficiency on reactor temperature, the proportionality of ammonia and hydrogen production on chemical oxygen demand values, the major impact of compressor isentropic efficiency, and the minimal response from changing the pressure of steam methane reforming. These results signify opportunities to improve the system and ultimately lead to lowered greenhouse gas emissions.