Доступ предоставлен для: Guest

ISSN Online: 2379-1748

ISBN Flash Drive: 978-1-56700-431-1

ISBN Online: 978-1-56700-430-4

First Thermal and Fluids Engineering Summer Conference
August, 9-12, 2015 , New York City, USA

EFFECT OF NANOSTRUCTURES AND ELECTROSTATIC INTERACTIONS ON MENISCUS SHAPE AND DISJOINING PRESSURE OF THIN LIQUID FILMS

Get access (open in a dialog) pages 959-962
DOI: 10.1615/TFESC1.fnd.012778

Аннотация

A general model of meniscus shape and disjoining pressure for thin liquid films on nanostructured surfaces with both van der Waals and electrostatic interactions accounted for is developed based on the minimization of free energy, the Derjaguin approximation and the DLVO theory. This model is then verified with molecular dynamics simulations for a water-alumina system with square nanostructures of varying depth and film thickness. Electrostatic interactions are shown to enhance the disjoining pressure effect. The meniscus shape becomes more conformal with increasing nanostructure depth and decreasing film thickness. The disjoining pressure effect is enhanced with nanostructure depth and this effect weakens as film thickness increases.