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ABSTRACT 
 

Natural convection driven by temperature differences between partially heated and cooled vertical walls in a 
square cavity is studied numerically. Steady or unsteady cellular flow structures and temperature patterns are 
illustrated along with the evolution of heat transfer rates in terms of Nusselt number. The cavity is filled with 
fluids of various Prandtl number, including .024 (liquid metal),  .71 (air), 6 (water), and 450 (silicon oil). The 
effect of Prandtl and Rayleigh numbers on the flow regime and heat transfer is established along with two 
different thermal boundary conditions. 
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1. INTRODUCTION  
 
The natural convection heat transfer has been the subject of the many studies since this phenomenon occurs 
in a wide variety of practical applications such as electronic equipment cooling, heat exchangers, solar 
collectors, and crystal growth. Following the classical work of Ostrach (1952), extensive experimental and 
numerical investigations have been conducted on both the heating and cooling aspects as applied to a 
combination of different geometries, boundary conditions, and fluids, leading to invaluable insight on 
buoyancy-driven flow regimes and heat transfer. Many focused on the well-known heat transfer physics in 
an enclosure with one wall maintained hot and the other (opposing wall) cold, while the remaining surfaces 
were kept adiabatic. Recently, natural convection in cavities with nonuniform wall temperature distribution 
received considerable attention due to its advantages in some engineering applications. Among these, 
relatively early work of Kubleck et al. (1980) and Poulikakos (1985) have studied natural convection in an 
air-filled rectangular enclosure with a single vertical wall accommodating both hot and cold regions 
(involving a step change in temperature in between) and the remaining three walls being adiabatic; Bilgen 
and Yedler (2007) considered a similar air-filled rectangular enclosure with one of side walls subjected to a 
sinusoidal temperature profile, while retaining the other three as adiabatic walls; also investigating an air-
filled rectangular cavity, Deng and Chang (2008) imposed sinusoidal temperature distribution on side walls 
combined with adiabatic top and bottom walls. Sivasankaran and Pan (2014) investigated the effect of 
amplitude and phase deviation of sinusoidal temperature distribution of side walls in a cavity with adiabatic 
horizontal walls. More recently, Adnani et al. (2016) considered an air- and water-filled cavity with lower 
half of the side walls maintained hot and the upper half cold, while keeping top and bottom walls adiabatic.  
 
The step change in wall temperature considered in some of the foregoing studies has motivated the present 
work. Recently, Evren-Selamet and her co-workers studied natural convection in square and elbow-shaped 
enclosures filled with air/liquid metal (2015), and finned cavities filled with air (2017) and liquid metal 
(2018). The objective of the current work is to expand on these steady/transient computational solutions in 
order to bring further insight into natural convection in a square cavity filled with variety of fluids where 
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each of the two side walls is now subject to two different temperatures. One crude model for that type 
arrangement may be a closed area heated by some sort of heat sources on side walls and cooled off by 
windows.  Following this brief Introduction, governing equations and boundary conditions are described 
next along with a brief referral to the numerical procedure. The results are discussed in Section 3, leading 
then to conclusions in the final section. 
 

 
2. DEFINITION and FORMULATION 

 
Present study considers a square cavity with two different boundary conditions as illustrated in Fig. 1: (a) 
lower halves of the side walls are maintained hot (at temperature TH ) and the upper halves cold (TC ); (b) left 
wall remains identical to Fig. 1a, while swapping hot and cold regions of the right wall, that is, now the 
upper half of right wall is hot and the lower half cold. Hereafter, these cases are referred to as BC1 and BC2, 
respectively. The top and bottom walls are both adiabatic.  
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Fig. 1 Schematic of the cavity for two cases: (a) BC1 and (b) BC2. 

 
In terms of the following dimensionless variables x=x*/L, y=y*/L; u=u*L/α, = *L/α; t=t*α/L2; 
p=p*L2/(ρα2);  =(T – Tc)/ (Th – Tc) where x*, y* are the coordinates; u*, * the velocities; t* the time; p* the 
pressure; T the temperature; L the width of the enclosure, the governing equations for mass, x- and y-
momentum, and energy may be written for buoyancy-driven incompressible  fluids as   
 

 

 

 

 

where ∇2 is the two-dimensional Laplacian; Pr=ν/α, the Prandtl number; Ra=gβΔTL3/να, the Rayleigh 
number which accounts for the coupling between energy and momentum balances, g being the gravitational 
acceleration, β the coefficient of thermal expansion of the fluid, ΔT the temperature difference between hot 
and cold boundaries; 𝜈𝜈 the kinematic viscosity; and α the thermal diffusivity. Boussinesq approximation, 
which treats density as a constant in all equations except for the gravitational force term in the momentum 
equation, is used. Even though the computations are performed by using primitive variables, flow field 
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results are presented in terms of the stream function Ψ (u = ∂Ψ/∂y,  = – ∂Ψ/∂x). No slip boundary 
conditions are imposed on all walls. Unsteady governing equations are employed here since the evolution of 
flow pattern and the associated temporal behavior can only be captured by using time-dependent 
computations. The governing equations with primitive variables are solved on a staggered grid (99x99) by a 
two-dimensional numerical scheme developed by the lead author applying the Godunov scheme to 
convective terms and centered finite difference to diffusive terms. Formulations of the problem and details of 
the method have been described in an earlier work [Evren-Selamet et al. (1992)]. Next, the computational 
results are presented. 
 

3. RESULTS 
 
The accuracy of the numerical approach employed in the present study has already been validated through 
earlier comparisons [see Evren-Selamet et al. (1992)] with the benchmark numerical solution of de Vahl 
Davis (1983), therefore such details will be avoided here. In addition, for the present case of BC1, one 
specific comparison is made with Adnani et al.’s work: an excellent agreement is observed in Fig. 2 which 
compares the present horizontal velocity profile in the middle of the cavity for Pr=.71 at Ra=105. Since 
Adnani et al.’s numerical solutions are based on steady-state governing equations, periodic or unsteady flow 
predictions found here are, however, not comparable with their study. For example, they predicted four 
counter-rotating cells of same size for Pr=7 at Ra=105, while the present study observes those cells periodically 
changing in size and shape due to the ability of time-dependent governing equations to capture the temporal 
physics. 
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Fig. 2 Comparison of the horizontal velocity profile in the middle of the cavity for Pr=.71 and Ra=105, BC1. 
 
Next, the results of the square cavity described earlier in Fig. 1 are presented in terms of streamlines and 
temperature profiles (isotherms), as well as the rate of heat transfer from the surfaces for  Pr=.024 (liquid 
metal), .71 (air), 6 (water), and 450 (silicon oil) at Ra=104-106. Heat transfer rate is characterized by Nusselt 
(Nu) number which is the dimensionless temperature gradient integrated over the walls.  
 
3.1 BC1 
 
Solutions are obtained with various Pr and Ra to examine their effect. For Ra=104, (a) the streamlines and (b) 
isotherms are illustrated in Fig. 3 for Pr=.71 and 450. Flow and temperature fields for Pr=.024 and 6 are similar 
to those of Pr=.71 at Ra=104: four counter-rotating cells appear for Pr=.024, .71, and 6, while two counter-
rotating cells for Pr=450. When Ra is increased to Ra=105 (Fig. 4), one main cell is now observed along with two 
corner cells in the flow field for Pr=.024; one elongated cell with two larger corner cells for Pr=.71; four-cell 
structure remains but with changing size and shapes for Pr=6 and 450 (not included in the figure) since flow now 
exhibits a time-dependent sinusoidal behavior. Single main vortex persists for Pr=.024 along with corner 
vortices of changing shape at all Ra considered here. Number of cells varies between 3 and 4 at Ra ≥3x105 and 

89



TFEC-2020-32123 
 

 
 
 

 

Ra≥5x104  for Pr=.71 and 6,  respectively,  while it remains 4 for Pr=450. As a representative case of oscillating  
flows at Ra=106, Fig. 5 demonstrates the transition from 3 cells to 4 and then back to 3 in one cycle of periodic 
variation for Pr=6. Two convective cells first combine into one with time, which is then divided into two again 
with the pressure of growing two corner cells (top row). Bottom row shows corresponding isotherms which are 
confined to thin thermal boundary layer along the walls. Heat transfer is dictated primarily by those thermal 
boundary layers. Figure 6 depicts (a) the streamlines and (b) the isotherms for Pr=450 at Ra=106 at a specific 
time. The strengths of four cells all rotating opposite to each other change periodically. Isotherms again are 
concentrated along the walls. Next, the predictions associated with the second boundary condition (BC2) are 
discussed.  
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Fig. 3 (a) Streamlines and (b) isotherms for Pr=.71 and Pr=450 at Ra=104; BC1. 
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Fig. 4 (a) Streamlines and (b) isotherms for Pr=.024 and Pr=.71  at Ra=105; BC1. 
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Fig. 5 Transient pattern of streamlines (top row) and isotherms (bottom row) in one cycle of oscillation for Pr=6 
and Ra=106.  
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Fig. 6 (a) Streamlines and (b) isotherms at t=.25 for Pr=450 and Ra=106.  
 
 
3.2 BC2 
 
For this case, the bottom half of right wall is at a colder temperature than the top half (recall Fig. 1b). Unlike 
BC1, BC2 produces a pair of counter-rotating cells on top of each other for all Pr considered here. To save space, 
Fig. 7 represents (a) the streamlines and (b) the isotherms, only for Pr=.024 and .71 at Ra=105. The centers of 
circulating patterns are shifted to the right or left wall depending on Pr but both cells are symmetric about the 
mid-height. Isotherms are observed to be intense close to the walls. Higher Ra results in a similar structure but 
with two additional small cells inside the outer large cell.  More stable solutions are obtained with this altered 
boundary condition for Pr=.71, 6, and 450. The evolution of Nu which represents the  sum of the averaged heat 
transfer rate along the heated/cooled  halves of both vertical side walls  gives a clear picture of  how modifying 
the boundary conditions from type 1 to 2 affects the heat transfer rate at various Pr and Ra.   
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Fig. 7 Streamlines (a) and isotherms (b) for Pr=.024 and Pr=.71 at Ra=105; BC2. 
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Figure 8 compares the evolution of NuH with BC1 (maroon) and BC2 (green) for Pr=.024, .71, 6, and 450 at 
Ra=105, 3x105, 5x105, and 106. For Pr=.024, NuH for BC2 at Ra=105 shows early oscillatory behavior, and then 
reaches nearly a steady final value – same as BC1 which does not exhibit oscillations along the way. At higher 
Ra, both BC1 and BC2 show periodic oscillations: BC2 converges to an oscillatory behavior with its amplitude 
and mean NuH being higher than those of BC1. For Pr=.71, NuH at Ra=105 reaches a steady state smoothly for 
both types of boundary conditions; BC1 shows early symptoms of oscillations at Ra=3x105 with such 
oscillations growing at Ra=5x105 and becoming chaotic at Ra=106, whereas BC2 approaches a steady solution 
for all Ra considered. For Pr=.71, switching boundary condition from 1 to 2 not only increases the heat transfer 
rate but also stabilizes the flow field. Similarly, at Pr=6, NuH for BC2 remains higher than that of BC1. For BC1, 
NuH is periodic at Ra=105 and 3x105, becoming nearly steady at higher Ra, whereas, for BC2, it is steady for all 
the discrete Ra considered here similar to Pr=.71. When Pr is increased further to 450, NuH shows regular 
sinusoidal variation at all Ra for BC1. BC2 again stabilizes the flow but the mean heat transfer rate is lowered 
slightly relative to BC1 at Ra=5x105 (and 7.5x105 [not included in the figure]). The effects of two types of 
boundary conditions on the temporal variation of NuH are depicted in Fig. 9 at four different Pr and various Ra. 
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Fig. 8 Temporal variation of NuH with two different boundary conditions for Pr=.024, .71, 6, and 450 at various 
Ra. 
 
 
Examining the left column (BC1) and the right column (BC2) of Fig. 9 reveals that BC2 stabilizes the heat 
transfer and flow field for Pr=.71, 6, and 450 for all the cases considered here. This stabilizing effect did not 
occur for Pr=.024. Lowest Nu number is predicted with the smallest Pr number as it is expected due to much 
higher conductivity of the fluid. 
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Fig. 9 Comparison of temporal variation of NuH  with two different boundary conditions  for Pr=.024, .71, 6 and 
450 at various Ra. 
 

Finally, mean value of NuH vs. Ra is shown in Fig. 10 for BC1 (solid line) and BC2 (dashed line) at four Pr used 
in this study. Most significant increase in Nu from BC1 to BC2 is obtained for Pr=.71 (blue) followed by Pr=6 
(red) and Pr=.024 (magenta); NuH appears to decrease slightly (again from BC1 to BC2) for Pr=450 (green) 
around Ra=5x105 and 7.5x105, in contrast to the behavior at smaller Pr. High viscosity of the silicon oil may be 
accountable for this behaviour. It is therefore concluded, from heat transfer enhancement viewpoint, that BC2 is 
most effective for Pr=.71 and 6, while also stabilizing the flow and temperature field. For these fluids BC2 alters 
the flow pattern from multi-cell to two-cell structure and energy transport by two cells appears better than that of 
multi cells leading enhancement of the average heat transfer rate inside the enclosure. This is also observed by 
Sivasankaran and Pan (2014).  
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Fig. 10 Comparison of mean value of NuH for Pr=.024, .71, 6, and 450 vs. Ra for BC1 (solid line) and 2 (dashed 
line). 
 
 

4. CONCLUSIONS 
 
Natural convection driven by temperature differences between partially heated and cooled vertical walls in a 
square cavity is studied numerically. The effect of Pr and Ra on the flow regime and heat transfer is 
established along with two different thermal boundary conditions. BC2 is observed to stabilize the temperature 
and flow field for Pr=.71, 6, and 450 at all cases considered here. The trends with Pr=.024 are, however, not 
unidirectional: low Ra range manifests the similar stabilizing effect, yet, higher Ra range (Ra=5x105 and 106) 

maintains the oscillations, while also exhibiting a level of growth in amplitudes with time. BC2 is found to 
increase the heat transfer rate noticeably for Pr=.024, .71, and 6, with the most impact observed for Pr=.71.  
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