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ABSTRACT

Scope is enhancement of scalar transport (heat, chemical species) in engineered flow systems by re-
orientations of a laminar base flow. Practical applications include mixing in inline heat exchangers by
downstream reorientation of baffles, stirring in bio-reactors by cyclic repositioning of impellers, and
subsurface chemicals distribution for in situ minerals mining by unsteady pumping schemes. Conven-
tional reorientation schemes consist of a periodic reorientation (in space or time) of the flow designed
to accomplish efficient fluid mixing. However, whether this approach indeed yields optimal scalar
transport for significant diffusion and/or chemical reactions is unclear. The present study explores an
alternative approach: adaptive reorientation of the flow by interval-wise selection of the reorientation
that is predicted to yield optimal scalar transport for a future time horizon. Key enabler for fast
predictions is a compact model based on the spectral decomposition of the scalar evolution in the base
flow. The adaptive reorientation scheme is investigated for a representative problem: enhanced heating
of a cold fluid in a 2D circular domain by an unsteady flow driven by step-wise activation of moving
boundary segments. This reveals that the adaptive reorientation scheme can substantially accelerate
the heating compared to conventional time-periodic reorientation designed for efficient mixing and
thus demonstrates its potential for attaining optimal scalar transport in reoriented flows.
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1. INTRODUCTION

The enhancement of scalar transport finds its immediate application in, for example, industrial mixing
and heat-transfer processes where promotion of scalar redistribution serves to improve mixing/heating
rate [1]. Industries involving subsurface flows to, for example, extract geothermal energy or minerals
through production fluid redistribution [2], dissolution of subsurface minerals or groundwater remedia-
tion [3], or to accomplish subsurface resource confinement (e.g. pollutants) [4] can greatly benefit from
enhanced redistribution of scalar quantities. The required redistribution can be accomplished through
laminar base flows that follow well-known principles to promote mixing set forth in [5]. Key features
in the applications of interest are that scalar transport is “driven” by i) temperature gradients due to
heat transport across system boundaries and/or ii) the presence of significant diffusion/chemical reac-
tions. Conventional remediation/heating approaches employ reorientation schemes (periodic in space
or time) specifically designed for efficient fluid mixing. Rationale for this methodology is that effective
exploitation of the stretch-and-fold mechanism underpinning mixing automatically yields optimal heat
transfer. Despite its validity in the advective limit this assumption does not necessarily hold for the
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intended applications for at least two reasons. First, heat transport by diffusion renders the link be-
tween fluid motion and thermal transport highly non-trivial. Second, heat transport across the system
boundary relies on temperature gradients to sufficiently “drive” transfer and thus, inherently, requires
a heterogeneous scalar field. However, efficient fluid mixing relies on the rapid homogenization of the
scalar field. This strongly suggests that efficient fluid mixing schemes may, at least in the vicinity of
the boundary, create a sub-optimal or even counter-productive condition for accelerated heat trans-
fer. Recent developments have focussed on the application of optimal control to develop reorientation
schemes with feedback that further accelerates homogenization [6]. However, the developed reorienta-
tion scheme is designed for (sub)optimal fluid mixing which only serves limited utility in the present
study for above mentioned reasons. Nonetheless, the generic approach permits a generalisation towards
thermal problems (i.e. transport including significant diffusion) and serves, without loss of generality,
as a bases for the adaptive reorientation scheme proposed in this study. The remainder of this work
presents a novel approach according to the following structure. In Sec. 2, we present the planar con-
figuration of an inline mixer that, together with the governing equations, describes the mechanism of
interest for enhancing heat transport. This system description is then used to present a case where
transport enhancement is limited for the conventional time-periodic approach in Sec. 3. Next, we detail
the theoretical framework underpinning the novel approach and show its capacity to accelerate heating
in Sec. 4. Finally, conclusions and recommendations for future research are presented in Sec. 5.

2. PROBLEM FORMULATION AND NUMERICAL METHOD

2.1 Configuration

This work adopts the 2D unsteady Rotated Arc Mixer (RAM) introduced in Ref. [7] as a representative
configuration for an in-depth transport analysis (Fig. 1a). The 2D RAM consists of a circular domain
D =

{
(r, θ) ∈ R2∣∣ r ≤ R,−π ≤ θ ≤ π

}
with radius R which is enclosed by a boundary Γ = ∂D as shown

in Fig. 1. It heats an initially cold fluid inside D through a constant temperature at the circumference
Γ. Circumference Γ contains N apertures of arc length ∆ which consecutively differ from each other

(a) Geometry

Ωk

x

y

∂D

∆R

(b) Aperture 1 (c) Aperture 2 (d) Aperture 3

Figure 1 Geometry of 2D Rotating Arc Mixer (RAM) with three apertures (N = 3) of arc length
∆ = π/4 and reoriented streamlines corresponding to activate aperture in (b)-(d).

by an angular offset Θ = 2π/N . These aperture activations serve to influence heat transport through
advection such that homogenization of the scalar field inside D accelerates. The geometric parameters
throughout this study are fixed to N = 3 and ∆ = π/4, as shown in Fig. 1a, which can be done without
loss of generality. No-slip boundary conditions assure the absence of flow at the circumference Γ except
at an aperture k where only the angular velocity ωk drives the fluid flow inside D through viscous
drag. These conditions can be physically realized through a motor-belt system as presented in Baskan
et al. [7]. Laminar flow conditions give apertures an associated steady field as illustrated by streamlines
of the base flow in Fig. 1b. Note that in the present study individual aperture activation results in
reorientation of the base flow by Θ = 2π/N as shown in Fig. 1b–Fig. 1d. Exact implementation of
the flow model for the 2D RAM is detailed in Sec. 2.2. Transport with multiple apertures requires a
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proper activation order to significantly accelerate homogenization compared to mere diffusive heating.
Therefore, the aim of this work is to devise an aperture activation scheme such that the transient for
heating the initially cold fluid to the boundary temperature is minimized.

2.2 Governing equations

Fluid motion is governed by the conservation laws for mass and momentum, which, assuming incom-
pressibility, laminar flow and absence of body forces other than gravity, in non-dimensional form read

∇∇∇ · v = 0, Sr
∂v
∂t

+ Re v · ∇∇∇v = −∇∇∇P +∇∇∇2v, (1)

with v (x, t) the fluid velocity and P (x, t) the pressure in position x ∈ D at time t ≥ 0. The corre-
sponding initial and boundary conditions are given by

v (x, 0) = 0, ∀x ∈ D, and v (x, t) =
{
ω eθ if x ∈ Γk

0 if x ∈ Γ\Γk
, (2)

where Γk = {(r, θ) ∈ Γ| −∆/2 ≤ θ− (k − 1)Θ ≤ ∆/2} and eθ indicate aperture k and the unit vector
in azimuthal direction, respectively. Coefficient ω = ±1 determines the sense of rotation: clockwise
(ω = 1) versus counter-clockwise (ω = −1). System (1) is parameterized by the Strouhal number
Sr = τν/τ = R2/ντ and the Reynolds number Re = UR/ν = ΩR2/ν, with τν = R2/ν the viscous
time scale, U = ΩR the azimuthal velocity of the apertures, ν the kinematic viscosity of the fluid, R as
in Fig. 1a and τ the aperture activation time. Strongly laminar conditions imply (i) a rapid response
of the fluid to changes in flow forcing by the apertures (i.e. Sr = τν/τ � 1) and (ii) negligible fluid
inertia (i.e. Re� 1). As presented in Baskan et al. [7] this simplifies (1) to

∇∇∇ · v = 0, −∇∇∇P +∇∇∇2v = 0, (3)
which with boundary conditions (2) describes aperture-wise steady Stokes flow that admits an analytical
expression for each aperture following Ref. [8]. Absence of explicit time dependence in (3) means that
unsteadiness enters the fluid motion entirely through switching between apertures k via boundary
condition (2). Moreover, simplification to steady Stokes flows causes the aperture reorientations to
carry over to the flow, meaning that flow vk driven by aperture k is just a reorientation of the base
flow v1 according to

vk (x) = vk (r, θ) = v1 (r, θ+ (k − 1) Θ) = v1 (Rk (x)) , (4)

as illustrated in Fig. 1b–Fig. 1d by the streamline patterns for the N = 3 apertures considered in the
present study. The class of unsteady flows investigated hereafter are constructed from reorientations of
these aperture-wise steady flows in (4) following

v (x, t) = vu(t) (x) , u(t) =
∞∑

n=0
un (H(t− tn+1)−H(t− tn)) , (5)

with u(t) the “orientation scheme” that activates aperture un ∈ U = {u0, u1, . . . } and the corresponding
flow vk according to Fig. 1 during time interval tn ≤ t ≤ tn+1. Here H(t) is the well-known Heaviside
function and tn = nτ. Set U determines the particular aperture sequence and thus the time signature
of the flow; e.g. U = {1, 3, 2} subsequently activates apertures (1, 3, 2) each for a duration τ.

2.3 Heat transfer

Heat transfer is governed by the conservation law for energy, which for the flow conditions in the RAM
identifies with the advection-diffusion equation for the temperature field T (x, t), reading

∂T

∂t
= −v · ∇∇∇T + 1

Pe
∇∇∇2T, (6)
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with v (x, t) the unsteady flow according to (5), Pe = UR/κ the Péclet number and κ the thermal
diffusivity. The uniform initial and boundary conditions for the heating problem defined in Sec. 2.1 are

T (x, 0) = T0, ∀x ∈ D, and T (x, 0)|Γ = T∞, (7)
with T0 the cold initial fluid temperature and T∞ > T0 the hot boundary temperature. In practical
systems typically Pe ∼ O(103), implying advection-dominated heat transfer yet still with a significant
contribution by diffusion. Heat transfer governed by (6) can (without loss of generality) be expressed
in terms of the transient temperature T̃ (x, t) according to

T̃ (x, t) ≡ T (x, t)− T∞, (8)

using property limt→∞ T (x, t) = T∞ for arbitrary v in present uniform case T∞. Transient T̃ allows an
investigation of heat transfer relative to a reference T∞ analogous to an error analysis encountered in
control theory Ref. [9]. This motivates the adaptive scheme based on transient temperature in Sec. 4.

2.4 Numerical method

Numerical simulation of the RAM employs the dedicated method proposed by Ref. [10]. This hinges
on a semi-discrete model obtained by discretization of (6) for each steady flow vk, yielding

dT̃ (t)
dt

= AkT̃ (t) , (9)

with T̃ (t) = [T̃ (x0, t) , . . . , T̃ (xM , t)]† the nodal temperature value vector on computational grid X =
[x0, . . . , xM ]† and Ak the discrete matrix approximation of the advection-diffusion operator († indicates
transpose). Time-independence of vk implies a time-invariant Ak and thus admits

T̃ (t) = UkT̃0, Uk = VkeΛΛΛktV−1
k , (10)

as semi-analytical solution for (9) using the spectral decomposition Ak = VkΛΛΛkVk, with Vk =
[φφφ(k)

0 , . . . ,φφφ
(k)
M ] and ΛΛΛk = diag(λ(k)

0 , . . . , λ
(k)
M ) the standard eigenvector and eigenvalue matrices, respec-

tively, of system matrix Ak. Semi-discrete model (9) and its solution (10) are key to the (computational)
methodology below for any orientation scheme u(t) and resulting velocity v (x, t) following (5). Note
that conventional FDM/FVM/FEM discretizations essentially yield model structures similar to (9)
such that the adaptive reorientation scheme, proposed in Sec. 4, is generally applicable.

3. CONVENTIONAL APPROACH: TIME-PERIODIC REORIENTATION

To study the influence of fluid motion on homogenization a time-periodic reorientation scheme is
employed below. These time-periodic flow reorientations substantially accelerate heating compared to
diffusion-only heat transfer. A scheme is defined through a repeated subset UT = {1, . . . , N} resulting
in the time-periodic orientation scheme U = {UT ,UT , . . .}. Via (5) this yields a flow field as

v (x, tn) = v (x, tn + T ) , (11)

with T = Nτ the period time. Aperture activation time, for UT = {1, 2, 3}, is investigated by weighting
transient temperature ˜̃T (t) on D. Chaotic trajectories of tracers for these times imply both schemes mix
effectively. However, Fig. 2 shows that heating rate (marginally) accelerates for increase in activation
times. Fig. 3 shows temperature snapshots for the reorientation schemes with different τ. In this study
all temperatures are normalized between min (T (x, t)) = 0 (blue) and max (T (x, t)) = 1 (red). A
comparison of these snapshots reveals vastly different temperature fields yet with similar heating rates.
This implies that entirely different mixing flows have a comparable impact on the heat transfer and
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Figure 2 Comparison of the error field in advection dominated transport (Pe = 103) for time-periodic
orientation schemes with different aperture activation times.

optimization on the basis of mixing performance thus is an unreliable approach to determine the
optimal conditions for heat transfer. Systematic enhancement of heat-transfer beyond time-periodic flow

(a) tn = 0.1. (b) tn = 10. (c) tn = 20. (d) tn = 30. (e) tn = 50. (f) tn = 100.

Figure 3 Snapshots of temperature evolution T (x, t) in an advection dominated flow (Pe = 103) for
time-periodic orientation schemes with aperture activation time τ = 5 (top row) and τ = 10 (bottom
row).

reorientations designed for effective mixing thus requires a scheme directly based on the temperature
field.

4. NOVEL APPROACH: ADAPTIVE REORIENTATION

4.1 Control strategy

Goal of the adaptive reorientation scheme proposed in this study is to minimize the transient from the
initial temperature T0 to the target temperature T∞. Therefore, a feedback controller is incorporated in
the system that, on the basis of intermediate temperature fields, adapts the flow reorientation described
by orientation scheme u(t) following (5) such that it maximizes heating rate (Fig. 4). The procedure
involves repeated execution of the following steps at each time step tn = nτ:

• Step 1: predict the transient temperature T̃k (x, tn+1) at time step tn+1 for each aperture k with
transient temperature T̃ (x, tn) at the current time-step tn as initial condition.

• Step 2: select the aperture k that maximizes heating rate in time interval tn ≤ t ≤ tn+1 and set
un = k in aperture sequence U for the orientation scheme u(t).

• Step 3: simulate the corresponding temperature evolution for time interval tn ≤ t ≤ tn+1.
415
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This procedure repeats each time step tn and attains maximal heating rates by minimizing

arg min
k

Jk (tn+1) , Jk (t) =
∫
D

T̃ 2
k (x, t) d2x, (12)

in which the cost-to-go Jk represents the error between predicted and target temperature for t ≥ 0. Prac-
ticality of the approach dictates that the aperture-wise transient temperatures predictions (T̃k (x, t))
in step 1 must be much faster than the aperture activation time τ. To this end a compact model is
proposed below.

Figure 4 The closed loop for adaptive flow reorientation in the Rotated Arc Mixer (RAM).

4.2 Compact model

The compact model leans on the existence of a so-called “spectral decomposition” of the temperature
evolution for the base flow v1 into elementary states (denoted “eigenmodes”) according to

T̃ (x, t) =
∞∑

m=0
αmφ(x)eλmt, T̃ (x, 0) =

∞∑
m=0

αmφ(x), (13)

with {φm, λm} the eigenfunction-eigenvalue pairs defined by the eigenvalue problem

Pe−1∇∇∇2φm − v1 · ∇∇∇φm = λmφm, (14)

corresponding with (6) and αm the expansion coefficients determined by the initial condition [7, 10].
Progressive decay of transient temperatures towards a bound implies stable eigenmodes (Re(λm) < 0)
that are ordered according to decay rate . . . ≤ Re(λ1) ≤ Re(λ0) < 0. Unsteady flow composition
from piece-wise steady Stokes flows, following (5), in conjunction with boundary conditions, as per (7),
transfers relation (4) between flow vk and base flow v1 to the thermal regime governed by (6). Thus,
spectral temperature evolution for vk is implies a reorientation of (13) following

T̃ (x, t) =
∞∑

m=0
α(k)

m φm (Rk (x)) eλmt, T̃ (x, 0) =
∞∑

m=0
α(k)

m φm (Rk (x)) , (15)

comprising of an identical eigenvalue spectrum and a reorientation of the eigenfunctions of the base flow
consistent with (4). Semi-analytical solution (10) has the same structure as spectral decompositions
(13) and (15) and constitutes their discrete approximation on the computational grid X, i.e.

T̃ (t) = VkeΛΛΛtV−1
k T0 =

M∑
m=0

α(k)
m φφφ

(k)
m eλmt, ααα(k) = V−1

k T0, (16)

with eigenvector φφφ(k)
m containing the nodal values of eigenfunction φ(k)

m (x). Subscript “k” in ΛΛΛk fol-
lowing (10) distinguishing an aperture-wise eigenvalue spectrum is omitted due to its invariance to
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reorientation according to (15). The eigenvector bases Vk relate to that of the base flow following

Vk = Rk−1V1, (17)

with rotation matrix R the discrete counterpart to operator Rk on the computational grid. This
affords two major reductions in computational effort compared to numerical treatment of (6) via
conventional spatio-temporal discretisations. First, semi-analytical solution (16) enables simulation of
the temperature evolution by a matrix-vector multiplication instead of a (computationally far more
expensive) time-marching scheme. (Spectral decomposition and relevant matrices are constructed in
a pre-processing stage.) Second, (16) enables simulations for apertures k > 1 entirely in terms of the
spectral decomposition of the base flow (k = 1) upon rotation of the eigenvectors via (17).

(a) m = 0. (b) m = 1. (c) m = 2 (Re). (d) m = 2 (Im).

(e) m = 7 (Re). (f) m = 7 (Im). (g) m = 10 (Re). (h) m = 10 (Im).

Figure 5 The leading dynamic modes of finite dimensional approximation of the advection diffusion
matrix for the base flow v1 of an advection dominated flow (Pe = 103).

Further reduction in computational effort exploits the exponential decay of each eigenmode m in the
spectral decomposition with characteristic time scale τm = −1/Re(λm). The ’slow’ modes are negligible
when τm/τ� 1 and thus admit an approximation of the temperature evolution by truncated expansion

T̃ (t) ≈ T̂ (t) =
Q∑

m=0
α̂(k)

m φφφ
(k)
m eλmt, α̂αα(k) = GkT0, Gk = (V̂†kV̂k)−1V̂†k, (18)

with Q�M and symbol .̂ indicating approximate quantities, where the retained terns in the spectral
decomposition define the so-called “dominant eigenmodes” [7, 10]. Fig. 5 shows the leading dominant
eigenmodes 0 ≤ m ≤ 10 corresponding with the base flow v1. Note that expansion coefficients α̂αα(k)

emanate from a least-squares projection of the initial condition on the truncated eigenvector basis V̂ =
[φφφ(k)

1 , . . . ,φφφ
(k)
Q ]. The retained modes generically include only a small subset of the full set; application

to a similar transport problem results in acceptable reductions of the model size and, inherently, the
required computational effort by an order of magnitude, i.e. Q/M ∼ O(10−1) [11]. An estimate of the
total reduction in computational effort by the truncation and the previous factors is given in Sec. 4.3.

4.3 Control strategy revisited

Reformulation of approximation (18) in an efficient matrix-vector operation

T̂k (tn+1) = Ûkα̂αα0, Ûk = V̂keΛ̂τ, α̂αα0 = GkT(tn), Λ̂ΛΛk = diag(λ0, . . . , λQ), (19)
417
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enables fast prediction of the aperture-wise temperatures Tk (x, t) in step 1 and subsequent selection
of the aperture yielding the highest heating rate in step 2 via the discrete counterpart

arg min
k

Ĵk (tn+1) , Ĵk (t) =
M∑

m=1
γmT̂ 2

k (xm, tn+1) , (20)

of minimization problem (12), with γm weight factors incorporating e.g. area weighting of T̃ (x, tn+1).
The reduction in computational effort afforded by the compact model can be estimated upon com-
parison to a conventional numerical model based on temporal discretisation of (9) into T̃p+1 = SkT̃p,
with Sk a system matrix constructed from Ak and tp = p∆t the time steps of the time-marching
scheme. Prediction of the aperture-wise temperatures T̃k by the compact model (19) requires two con-
secutive matrix-vector multiplications with Q×M matrix Gk and M ×Q matrix Ûk. A conventional
scheme, on the other hand, typically necessitates τ/∆t = N ∼ O(102 − 103) steps for time interval
τ = tn+1 − tn that each require a matrix-vector multiplication with M × M matrix Sk. Thus the
compact and conventional method involve c1 = 4QM flops and c2 = 2NM2 flops, respectively, per
prediction. (Matrix-vector products with an I × J matrix involve c = 2IJ flops [12].) This yields
c2/c1 = NM/2Q ∼ O(103 − 104) as relative computational effort, exposing the dramatic reduction by
the compact model that makes the control strategy proposed in Sec. 4.1 viable for practical applications.

It must be stressed that, though the present study employs the dedicated approach by Ref. [10],
system matrix A1 of the base flow and its spectral decomposition underlying the above compact
model can be obtained by spatial discretization of (6) using conventional FDM/FVM/FEM schemes.
Commercial simulation packages as e.g. COMSOL Multiphysics in fact conveniently provide said (FVM-
based) system matrix via exportation from a standard CFD model. Moreover, reliance of the approach
on only a small subset Q � M of dominant eigenmodes permits their identification by dedicated
numerical algorithms for determination of leading eigenvalue-eigenvector pairs of large matrices. The
present study e.g. utilizes the built-in function eigs in MATLAB for this purpose.

Finally, so-called “Dynamic Mode Decomposition” (DMD) enables determination of the dominant
eigenmodes – and construction of the compact model (19) – directly from temperature time series
{T(t0), T(t1), . . . , T(tn), . . . } on discrete grids X. A major advantage of DMD is that it concerns a
data-based technique and thus (in principle) facilitates the proposed control strategy using data from
conventional CFD, laboratory experiments or field measurements [13]. However, DMD often is sensitive
to (experimental) noise, which may hamper isolation of sufficient dominant eigenmodes for a reliable
approximation (18). (Compare e.g. the leading eigenmodes obtained from CFD versus experimental
data in Ref. [7].) The model-based approach adopted in the present study is far more robust in this
respect, but also more laborious than DMD. Hence both the model-based and data-based approach
offer ways to realize the proposed control strategy yet their suitability and feasibility are case-specific.

4.4 Performance

Performance of the novel approach is compared to that of a time-periodic scheme designed for optimal
mixing in Fig. 6. Here, adaptive schemes are employed that allow i) only clockwise boundary motion
at each aperture (ω = 1 in (2)) ii) or both clockwise and counter-clockwise boundary motion at each
aperture (ω = ±1 in (2)) during the minimization of (20). Note that flow reversal in the latter permits
2N = 6 potential aperture candidates that can minimize Ĵk(t) in (20) each time-step tn instead of
N = 3. A comparison of the adaptive scheme, without flow reversal, with a time-periodic scheme in
Fig. 6 reveals faster homogenization from 250 to 210 non-dimensional time-units (16 % reduction).
Flow reversal further accelerates this homogenization by shortening the transient from 250 to 185 time
units (26 % reduction). Temperature snapshots for the adaptive scheme with and without flow reversal
are shown in top and bottom row of Fig. 7, respectively. Comparison of these snapshots to those of the
time-periodic scheme (Fig. 3) reveals an entirely different structure with hot plumes emerging from the

418



TFEC-2020-32128

(a) Schemes.

0 20 40 60 80 100 120 140 160 180 200 220 240
−3
−2
−1

0
1
2
3

t [−]

u
[−

]
Periodic
Adaptive
Adaptive reversal

(b) Error.

0 20 40 60 80 100 120 140 160 180 200 220 240
−3

−2

−1

0

t [−]

lo
g 1

0

(∥ ∥ ∥T̃
∥ ∥ ∥) [−

]

Periodic
Adaptive
Adaptive reversal

Figure 6 The (a) orientation scheme and (b) the transient temperature for the time-periodic and the
novel schemes for advection dominated transport (Pe = 103) with τ = 5.

(a) tn = 0.1. (b) tn = 10. (c) tn = 20. (d) tn = 30. (e) tn = 50. (f) tn = 100.

Figure 7 Temperature evolution T (x, t) of an advection dominated flow (Pe = 103) with aperture
activation time τ = 5 of the novel flow orientation scheme driven in only clockwise (top row) and in
both clockwise and counter-clockwise directions (bottom row).

boundary for the adaptive approach. Minimization of (20) with flow reversal in fact yields a periodic
switching between aperture 1 (ω = 1) and 3 (ω = −1). These results demonstrate the great potential
of the novel scheme compared to the time-periodic approach.

5. CONCLUSIONS

Conventional schemes for enhancement of scalar transport by flow reorientation consist of a periodic
reorientation (in space or time) of the flow designed to accomplish efficient fluid mixing. This approach
hinges on the assumption that efficient mixing automatically yields efficient scalar transport. The
current study demonstrates by way of a representative heat-transfer problem, i.e. heating of an initially
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cold fluid via a hot boundary, that this premise not necessarily holds in case of scalar transport
involving significant diffusion and exchange across the boundary. Adaptive reorientation of the flow
based on predicted future evolutions of the temperature field from feedback of intermediate states by the
proposed scheme namely substantially accelerates the heating of the cold fluid compared to conventional
periodic schemes. A compact model (which can be constructed in various ways) enables fast predictions
of the temperature evolution and thus makes the proposed scheme (in principle) applicable for real-time
process control.

Experimental investigations of the performance of the adaptive scheme for the heating problem con-
sidered in this study are in progress. Future efforts aim at (further) paving the way to practical ap-
plication of the proposed scheme by data-based construction of compact models, estimation of the full
temperature field from discrete sensor data and development of control strategies for establishment of
heterogeneous states (e.g. thermal fronts for promotion of chemical reactions).

ACKNOWLEDGMENTS

This research has been made possible by the Netherlands Organisation for Scientific Research (NWO)
as part of the Computational Sciences for Energy Research Initiative (CSER; grant 15CSER15).

References
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